TubeTK is an open-source toolkit for the segmentation, registration, and analysis of tubes and surfaces in images.

Tubes and surfaces, as generalized 1D and 2D manifolds in N-dimensional images, are essential components in a variety of image analysis tasks. Instances of tubular structures in images include blood vessels in magnetic resonance angiograms and b-mode ultrasound images, wires in microscopy images of integrated circuits, roads in aerial photographs, and nerves in confocal microscopy.

A guiding premise of TubeTK is that by focusing on 1D and 2D manifolds we can devise methods that are insensitive to the modality, noise, contrast, and scale of the images being analyzed and to the arrangement and deformations of the objects in them.  In particular, we propose that TubeTK's manifold methods offer improved performance for many applications, compared to methods involving the analysis of independent geometric measures (e.g., edges and corners) or requiring complete shape models.

TubeTK is implemented as a C++ library and makes extensive use of ITK and VTK.  Select methods of TubeTK are provided as command-line applications and as extensions in 3D Slicer, an open-source medical imaging application.